Roll No. \square
Total No. of Questions: 07

M.Sc. (Mathematics) (Sem. - 4)

 OPERATIONS RESEARCH

 OPERATIONS RESEARCH
 Subject Code: MSM503-18
 M Code: 77873
 Date of Examination : 17-12-2022

Time: 3 Hrs.
Max. Marks: 70
INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of FIVE questions carrying TWO marks each.
2. SECTION-B contains THREE questions carrying FIFTEEN marks each and students have to attempt any TWO questions.
3. SECTION-C contains THREE questions carrying FIFTEEN marks each and students have to attempt any TWO questions.

SECTON-A

1. Write briefly:
a) Is the union of two convex gis is convex? Justify your answer.
b) Determine the maxim $1 /$ minimum (ifany) of the following function:

$$
f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{3}+x_{2} x_{3}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}
$$

c) Solve the following linear programming problem

$$
\max Z=x_{1}+2 x-2+x_{3}+x_{4}
$$

Subject to

$$
x_{1}+x_{2}+3 x_{3}+4 x_{4}=12, x_{1}, x_{2}, x_{3}, x_{4} \geq 0
$$

d) Express the following assignment problem as a linear programming problem

	J_{1}	J_{2}	J_{3}
W_{1}	1	3	4
W_{2}	6	2	7
W_{3}	4	3	1

e) Define a convex function. Is the function $f(x)=|x+1|$ convex?

SECTION-B

2. Solve the following LPP by using Big M method

Subject to

$$
\begin{gather*}
\max 4 x_{1}+3 x_{2}+5 x_{3} \tag{15}\\
x_{1}+3 x_{2}+2 x_{3} \leq 10 \\
2 x_{1}+2 x_{2}+x_{3} \geq 6 \\
x_{1}+2 x_{2}+3 x_{3}=14, x_{1}, x_{2}, x_{3} \geq 0 \tag{7}
\end{gather*}
$$

3. a) State and prove weak duality theorem.
b) Consider the following linear programming problem

$$
\begin{gather*}
\max \quad Z=4 x_{1}+3 x_{2} \tag{8}\\
\text { subject to, } \quad x_{1}+x_{2} \leq 8,2 x_{1}+x_{2} \leq 10, x_{1}, x_{2} \geq 0
\end{gather*}
$$

Solve this problem graphically and then using complementary slackness theorem find an optimal solution of its dual.
4. a) Consider the following lineforaming problem

$$
\begin{equation*}
\max Z=4 x_{1}+6 x_{2}+2 x_{3} \tag{10}
\end{equation*}
$$

subject to

An optimal table of a LPP is given below

c_{B}	Basis	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	X_{B} (Sol.)
	$z_{j}-c_{j}$	0	0	6	$10 / 3$	$2 / 3$	$Z=16$
4	x_{1}	1	0	-1	$4 / 3$	$-1 / 3$	1
6	x_{2}	0	1	2	$-1 / 3$	$1 / 3$	2

i) If an additional constraint $2 x_{1}+3 x_{2}-2 x_{3} \leq 4$ is added, will the current optimal solution get disturbed? If so, find a new optimal solution.
ii) If the coefficients of x_{3} in the constraints are changed from $(1,7)^{T}$ to $(1,2)^{T}$, discuss the effect of this change in the given optimal solution.
iii) What happens if the RHS of the constraints is changed from $(3,9)^{T}$ to $(7,17)^{T}$?
b) An optimal table of this problem is given below

c_{B}	Basis	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	X_{B} (Sol.)
	$z_{j}-c_{j}$	0	0	$17 / 7$	$6 / 7$	$4 / 7$	$Z=2$
4	x_{2}	0	1	$1 / 7$	$2 / 7$	$-1 / 7$	0
2	x_{1}	1	0	$17 / 7$	$-1 / 7$	$4 / 7$	1

Construct the original LPP. It is given that x_{4} and x_{5} are slack variables.

SECTION-C

5. a) Consider the data of a project as shown in the following table.

Activity	Normal time (Weeks)	Normal cost (Rs.)	Crash time (Weeks)	Crash Cost (Rs.)
$1-2$	5	400	4	460
$1-3$	13	700	9	900
$1-4$	7	600	4	810
$3-5$	4140	800	11	865
$2-3$	6	900	4	1130
$2-4$	5	1000	3	1180
$4-5$	9	1500	6	1800

i) Draw the network and find the normal duration, normal duration and critical path.
ii) Find the optimal cost for completing the project in 22 days?
b) There are four jobs A, B, C and D and these are to be performed on four machine centres I, II, III and IV. One job is to be allocated to a machine center, though each machine is capable of doing any job at different cost given by the matrix below:

	A	B	C	D
I	5	7	11	6
$I I$	8	5	9	6
$I I I$	4	7	10	7
$I V$	10	4	8	3

Find the allocation of jobs to the machines so that the total cost of processing is minimum
6. Consider a cost minimizing transportation problem whose cost matrix is given below:

	D_{1}	D_{2}	D_{3}	D_{4}	a_{i}
S_{1}	11	13	17	14	250
S_{2}	16	23	14	9	300
S_{3}	21	24	13	10	400
b_{j}	200	225	275	250	

Where $a_{i}, i=1,2,3$ and $b_{j}, j=1,2,3,4$ is the availability and demand at source S_{i} and destination D_{j} respectively.
a) Find initial basic feasible so fion using least cost method?
b) Is the solution obtaingo in part (i) above optimal? If not, then find an optimal feasible solution of this prem?
7. a) Use Wolfe's mginod to solve the following Quadratic programming problem:
subject to

$$
\begin{equation*}
\max Z=x_{1}+x_{2}-x_{1}^{2}+2 x_{1} x_{2}-2 x_{2}^{2} \tag{10}
\end{equation*}
$$

$$
2 x_{1}+x_{2} \leq 1, x_{1}, x_{2} \geq 0
$$

b) Consider the nonlinear programming problem

$$
\begin{equation*}
\min Z=-x_{2} \tag{5}
\end{equation*}
$$

Subject to

$$
x_{1}^{2}+x_{2}^{2} \leq 4,-x_{1}^{2}+x_{2} \leq 0
$$

Verify that the KKT conditions are satisfied at (0,0), but it, is not. a global (not even a local) minimum point.

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any
paper of Answer Sheet will lead to UMC against the Student.

