Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

Total No. of Questions: 07

M.Sc. (Mathematics) (Sem. – 4)

OPERATIONS RESEARCH

Subject Code: MSM503-18

M Code: 77873

Date of Examination : 17-12-2022

Time: 3 Hrs.

Max. Marks: 70

Total No. of Pages: 04

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of FIVE questions carrying TWO marks each.
- 2. SECTION-B contains THREE questions carrying FIFTEEN marks each and students have to attempt any TWO questions.
- 3. SECTION-C contains THREE questions carrying FIFTEEN marks each and students have to attempt any TWO questions.

SECTON-A

1. Write briefly:

- a) Is the union of two convex sets is convex? Justify your answer.
- b) Determine the maximum/minimum (if any) of the following function:

$$f(x_1, x_2) = x_1 + 2x_3 + x_2x_3 - x_1^2 - x_2^2 - x_3^2$$

c) Solve the following linear programming problem

Subject to
$$max Z = x_1 + 2x - 2 + x_3 + x_4$$
$$x_1 + x_2 + 3x_3 + 4x_4 = 12, x_1, x_2, x_3, x_4 \ge 0$$

d) Express the following assignment problem as a linear programming problem

	J_1	J_2	J_3
W_1	1	3	4
W_2	6	2	7
W_3	4	3	1

M-77873

S-721

Download all NOTES and PAPERS at StudentSuvidha.com

e) Define a convex function. Is the function f(x) = |x + 1| convex?

SECTION-B

 $\max 4x_{1} + 3x_{2} + 5x_{3}$ Subject to $x_{1} + 3x_{2} + 2x_{3} \le 10$ $2x_{1} + 2x_{2} + x_{3} \ge 6$ $x_{1} + 2x_{2} + 3x_{3} = 14, \ x_{1}, x_{2}, x_{3} \ge 0$ 3. a) State and prove weak duality theorem. (7)

b) Consider the following linear programming problem

2. Solve the following LPP by using Big M method

$$\begin{array}{ll} \max & Z = 4x_1 + 3x_2 \\ \text{subject to,} & x_1 + x_2 \leq 8, 2x_1 + x_2 \leq 10, x_1, x_2 \geq 0 \end{array}$$

Solve this problem graphically and then using complementary slackness theorem find an optimal solution of its dual.

4. a) Consider the following line corogramming problem

$$\max \quad Z = 4x_1 + 6x_2 + 2x_3$$

subject to

$$x_1 + x_2 + x_3 + x_4 = 3, \quad x_1 + 4x_2 + 7x_3 + x_5 = 9, \quad x_1, x_2, x_3, x_4, x_5 \ge 0$$

An optimal table of a LPP is given below

c _B	Basis	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	X_B (Sol.)
	$z_j - c_j$	0	0	6	10/3	2/3	<i>Z</i> = 16
4	<i>x</i> ₁	1	0	-1	4/3	-1/3	1
6	<i>x</i> ₂	0	1	2	-1/3	1/3	2

- i) If an additional constraint $2x_1 + 3x_2 2x_3 \le 4$ is added, will the current optimal solution get disturbed? If so, find a new optimal solution.
- ii) If the coefficients of x_3 in the constraints are changed from $(1,7)^T$ to $(1,2)^T$, discuss the effect of this change in the given optimal solution.

M-77873

S-721

(15)

(8)

(10)

Download all NOTES and PAPERS at StudentSuvidha.com

- iii) What happens if the RHS of the constraints is changed from $(3,9)^T$ to $(7,17)^T$?
- b) An optimal table of this problem is given below

C _B	Basis	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>X_B</i> (Sol.)
	$z_j - c_j$	0	0	17/7	6/7	4/7	<i>Z</i> = 2
4	<i>x</i> ₂	0	1	1/7	2/7	-1/7	0
2	<i>x</i> ₁	1	0	17/7	-1/7	4/7	1

Construct the original LPP. It is given that x_4 and x_5 are slack variables.

SECTION-C

5. a) Consider the data of a project as shown in the following table.

Normal time (Weeks) Normal cost (Rs.) Crash time (Weeks) Activity Crash Cost (Rs.) 1 - 25 4 400 460 700 1 - 313 9 900 1 - 4600 4 810 3 - 5800 865 11 2 - 3900 4 1130 2 - 41000 3 1180 6 4 - 51500 1800

- i) Draw the network and find the normal duration, normal duration and critical path.
- ii) Find the optimal cost for completing the project in 22 days?
- b) There are four jobs A, B, C and D and these are to be performed on four machine centres I, II, III and IV. One job is to be allocated to a machine center, though each machine is capable of doing any job at different cost given by the matrix below: (5)

M-77873

S-721

Download all NOTES and PAPERS at StudentSuvidha.com

(10)

	Α	В	С	D
Ι	5	7	11	6
II	8	5	9	6
III	4	7	10	7
IV	10	4	8	3

Find the allocation of jobs to the machines so that the total cost of processing is minimum

6. Consider a cost minimizing transportation problem whose cost matrix is given below: (15)

	D_1	D_2	D_3	D_4	a _i	
<i>S</i> ₁	11	13	17	14	250	
<i>S</i> ₂	16	23	14	9	300	
S ₃	21	24	13	10	400	G
bj	200	225	275	250	\Diamond	•
	-					

Where a_i , i = 1,2,3 and b_j , j = 1,2,3,4 is the availability and demand at source S_i and destination D_j respectively.

- a) Find initial basic feasible solution using least cost method?
- b) Is the solution obtained in part (i) above optimal? If not, then find an optimal feasible solution of this proviem?
- 7. a) Use Wolfe's method to solve the following Quadratic programming problem: (10)

$$\max Z = x_1 + x_2 - x_1^2 + 2x_1x_2 - 2x_2^2$$
$$2x_1 + x_2 \le 1, x_1, x_2 \ge 0$$

subject to

b) Consider the nonlinear programming problem

$$\min Z = -x_2$$

Subject to

Verify that the KKT conditions are satisfied at (0,0), but it, is not. a global (not even a local) minimum point.

 $x_1^2 + x_2^2 \le 4$, $-x_1^2 + x_2 \le 0$

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.

M-77873

S-721

(5)

Download all NOTES and PAPERS at StudentSuvidha.com